| DNC FILE COPY o
September 1988 Report No. STAN-CS-88-1222
Also Numbered KSL-88-62
N
s
N
o Load Balancing for Massively-Parallel
a Soft-Real-Time Systems
h
o by
<
Max Hailperin

DTIC
ELECTE
NOV 0 9 1988§ ' '

Department of Computer Science

Stanford University
Stanford, California 94305

D
m'RBU'noN STATEMENT A .

Approved 4
T PubLe rejeqq
Dhtribuhon Unlimijted o

U

Knowledge Systems Laboratory August 1985
1 Report No. KSL-88-62

Load Balancing for Massively-Parallel Soft-Real-Time Systems

Max Hailperin

Department of Computer Science

Stanford University Accesion For ¥

Stanford, CA 94305 NTIS CRAa&l v |
DTIC TaB Qa
Unannour;ed 0
Justficaticn

Dh‘nm ton

Avadebinty Codes
A 7:-5;7)(7 or
Dist Spacai

i

To appear in condensed form in:
Frontiers ’88 The Second Symposium on the Frontiers of Massively Parallel Computation

k23

Load Balancing for Massively-Parallel
Soft-Real-Time Systems

Max Hailperin®
Knowledge Systems Laboratory
Computer Science Department

Stanford University
Stanford, CA 94305

August 30, 1988

\ M’i‘;",/
Abstract

Global load balancing, if practical, would allow the effective use of
massively-parallel ensemble architectures for large soft-real-time prob-
lems. The challenge is t> replace quick global communications, which is
impractical in p massively-parallel system, with statistical techniques.
In this vein, we proposesa novel approach to decentralized load bal-
ancing based on statistical time-series analysis. Each site estimates
the system-wide average load using information about past loada of
individual sites and attempts to equal that average. This estimation

in naturally exhibit loads that are periodic, in a statistical sense akinto
seasonality in econometrics. how this load-characterization

process is practical because the soft-real-time systems we are interested {
I% /\ wor Y

technique can be the foundation for a load-balancing system in an
architecture employing cut-through routing and an efficient multicast
protocol. ﬂ(n) &

*To appear ir condensed form in Frontiers '88: The Second Symposium on the Frontiers
of Massively Parallel Computation. This material is based upon work supported under
a National Science Foundation Graduate Fellowship. Any opinions, findings, conclusions
or recommendations expressed in this publication are thoee of the author and do not
necessarily reflect the views of the National Science Foundation. This work was also
supported by DARPA Contracts F30602-85-C-0012 and MDA903-83-C-0335, NASA Ames
Contract NCC 2-220-S1, Boeing Contract W266875, and Digital Equipment Corporation.

L e a—b—

bad ot

i, e - M. A T —.. st . st . N

1 Introduction

Our research group, the Stanford Knowledge Systems Laboratory Advanced
Architectures Project, is exploring the construction of massively-parallel,
object-oriented, knowledge-based, soft-real-time signal-interpretation sys-
tems. It seemed clear early on that some sort of adaptive load-distribution
scheme would be necessary to allocate resources to such dynamic systems.
Otherwise, in order to assure acceptable real-time performance, the system
could only be lightly loaded, and the large-scale signal-interpretation prob-
lems the massive parallelism was intended to allow would not be possible.
The remainder of this section explains why we desire a scheme which globally
balances loads by migrating objects, and how we can exploit the somewhat
periodic nature of our systems’ loads to do global balancing in a manner
appropriate to thousands of processing elements.

Much discussion in the load-distribution literature recently has centered
on the choice of load balancing vs. load sharing [14]. While load balancing
strives to keep all sites equally loaded, load sharing merely tries to prevent
unnecessary idleness. Load balancing is appropriate to object-oriented real-
time systems because

o real-time systems need to prevent long waits for processing—load bal-
ancing, by reducing the variance as well as the average of waiting times
better achieves this; also,

e migrating objects to balance current load tends to also balance the
future arrival of additional work at sites.

Traditionally, decentralized adaptive load-balancing systems have been
local: they balance loads in small neighborhoods (the neighborhoods may
be logical, rather than physical), and rely on repeated local adjustments to
achieve global balance. (For a clear example, see the descriptions of diffusion
in [12,13].) We find this inappropriate to our circumstances because

e modern interconnection networks employing cut-through or wormhole
routing reduce the importance of locality [7],

o local techniques can fall prey to oscillation and wave-front-like propa-
gation in the face of non-ideal conditions, and

o local techniques have difficulty responding quickly enough for dynamic
and time-critical systems.

RN Y v

——

R S g - e
T e . -

Ry

A global load-balancing system must somehow allow each site to estimate
the current (or near-future) system-wide total load, in order that it may ac-
quire or jettison sufficient work to bring its own load to the system-wide av-
erage. This seems incompatible with the constraints of a massively-parallel
system: a site in a massively-parallel system must wait a considerable time
to acquire global knowledge. A

This apparent contradiction can be reconciled by using a stochastic time-
series model to use prior load information to predict current loads. However,
this approach is useless in most computer systems, as their loads are not very
predictable.

Luckily, the real-time systems we are interested in (and many others)
exhibit a different behavior. Their loads are periodic—not rigidly so, but
rather in the same loose, statistical sense as many economic variables are
seasonal. This periodicity is induced by sampled or scanned inputs and by
sample-to-sample or scan-to-scan consistency in the outside world. Period-
icity makes the loads more predictable, at least for lead times not greater
than the period. As the period is generally relatively long, each site can
have complete knowledge of loads at least through one period ago. This al-
lows reasonably accurate prediction of current (or near-future) system-wide
loads.

Notice that the statistical nature of this approach makes it appropriate
to massively-parallel systems with thousands of processing elements:

o The large number of sites makes more straightforward methods em-
ploying global communications impractical.

e On the other hand, the large number of sites is necessary to make the
statistical methods valid.

We are not suggesting this approach for real-time systems which are
" rigidly periodic; more direct use can be made of their periodicity. For exam-
ple, Yan’s “post-game analysis” method [17] could be used to successively
refine a quasi-static mapping.

2 An Example Time Series

In this section we examine the evolution over time of the system-wide load in
one of our real-time systems—an aircraft tracking and classification system
{16). We show that a simple stochastic model reasonably approximates this
time series, that it is consistent with a common-sense understanding of the

3

.m ™ o

T T ey

load
2 R
e S—

-

J.W\/\J\/&

300 310 320 330 340 350 300 370 380 306 400
time (ms)

Figure 1: A sample of a load time series.

system, and that it allows moderately accurate prediction without recent
complete information. Two notes are in order:

o Only the earliest, simplest, most data-driven stage of the system was
operational when this data was taken; this results in a more regular
time series than would otherwise be the case. In particular, diagnostic
tests show our model to be incomplete, in that it misses a couple of
sub-periods caused by the structure of the computation. We expect
the structure of a complete system to be complex enough not to show
through in the load time series.

¢ The plots in Figures 1 and 4 below show only a typical interval out of
the larger time series which was analyzed.

Figure 1 shows the load over ten periods; each period is ten time quanta
long, and the load value for each quantum is an average total of task queue
lengths over that quantum. Notice that the pattern gradually shifts from
period to period. Also, notice that as the observed activity diminishes, the
system’s performance varies from not quite keeping up with the input to
having a relatively long period of quiescence between cycles. It is charac-
teristic of real-time systems that they are sized so as to perform acceptably
during peak periods, even if this means idleness at other times; this allows

" the periodicity of the input to show through as a periodicity of the load.

4

The sub-periods referred to above are also visible in the graph—the coarse
sampling and small excerpt obscure it somewhat, but each major peak is
followed by two smaller peaks whose sizes correlate with each other and that

of the major peak.

2.1 Stochastic model

We analyzed this series using the methods of Box and Jenkins (3}!, and iden-
tified as a suitable first-cut model for it a multiplicative integrated moving
average (IMA) process of orders (0,1,1) x (0,1,1);0. This model has the
form: '

2t = 21 + 21-10 — Zi-11 + 8¢ — 0ai—y — Oag_10 + 00a;_1,

where z; is the system-wide load, a, is a white-noise series, and & and ©
are parameters. The structure of this process is more evident when written
using the backwards shift operator B:

(1 - B)(1 - B")z = (1 - 6B)(1 - ©B)a,.

Adding the constraint that loads must be non-negative improves this basic
model.

This model, while suggested by statistical evidence, is also plausible in
terms of the mechanism of the system. The non-periodic component of the
model essentially states that the load persists, except that it is subject to
random perturbations. Some fraction (#) of each random perturbation is of
short-term effect only, while the remainder lasts until counteracted; this fits
well with a birth-death view of processes. The periodic component of the
model is identical in form, and can be similarly justified: the aircraft under
observation (and thus the load pattern) remain constant except for random
perturbations, some fraction (1 — ©) of which are long-lasting entries or
departures from the field of observation.

This model belongs to the broad class of stochastic processes known as
ARMA (autoregressive-moving average) processes. It is interesting to ask
why this particular ARMA praqcess should be chosen—might others not fit
as well? The answer is partially that this is the simplest periodic ARMA
process whose periodic and non-periodic components are both:

¢ non-stationary (i.e., they have no fixed level),

!The equations in this section are reproduced with minor changes in notation from {3].

5

R et ST

e stable (i.e., they don’t grow explosively), and
o homogeneous (i.e., everywhere self-similar except for level).

Naturally a higher-order process could be used, which would fit better.
However, it is generally preferable to use the simplest suitable model. An-
other possibility would be to drop the requirement of level independence
by expanding the model to include a stationary autoregressive operator,
i.e. by making it ARIMA (autoregressive-integrated moving average) rather
than merely IMA. It can be argued that a busier system will spawn more
processes, or alternatively that a busier system will run more processes to
completion. We left this component out of our model because

e in a loaded system, the activity is not proportional to the load (as
additional load means additional waiting tasks, rather than additional
running tasks), and

o the statistical evidence does not unambiguously suggest such a com-
ponent.

Diagnostic tests, as suggested by Box and Jenkins, showed that the
model was only roughly fitting, due in part to the unmodeled sub-periods.
This is especially evident in the cumulative periodogram of residuals, repro-
duced in Figure 2; the bulge around frequency 0.25 (period 4) shows that
the model misses some periodicity in that neighborhood. (A cumulative pe-
riodogram shows an integrated power spectrum. A perfectly fitting model
would leave white-noise residuals with a flat power spectrum and hence
a straight diagonal cumulative periodogram.) Even the cumulative peri-
odogram of ideal white-noise residuals might, because of the limited sample
size, deviate outside the dashed lines approximately 25% of the time (the
limit lines are calculated from the Kolmogorov-Smirnov test). Therefore, as
the bulge just reaches the 25% limit line, it can’t be considered an especially
serious failure of the model. On the other hand, other statistical evidence
and our understanding of the system indicate that the model is genuinely
incomplete, rather than the bulge merely being an artifact of the limited
sample size. We felt that incorporating these sub-periods into the model
would be artificial, however, both because they are an artifact of the sim-
plicity of the sample system, and also because they are not a priori known
(or necessarily constant), unlike the externally imposed period.

6

#%‘.. -

normalized cumulstive spectrum

Ma.o o.1 02 [X] 04 05

Figure 2: Normalized cumulative periodogram of residuW 4

2.2 Forecasting

The non-periodic component of the model is that which is conventionally
used for aperiodic computer systems; it gives rise to the familiar exponen-
tially-weighted average forecast function. The periodic component in effect
adds an exponentially-weighted average of corrections to this forecast, de-
rived from the experience at corresponding points in earlier periods. For-
mally, the best one-step-ahead forecast possible for the model is found by
assigning weights 7; to the loads j steps earlier, where

o= #71(1-6),5=1,...,9

0 = °(1~0)+(1-9)

m = M1-0+(1-0(1-90)

;= Oxj1+Oxj.10-007j_1y, j 2 12.

Depending on the relationship between 8 and O, the heaviest weight
in the forecast may either be on the most recent value, or on the one a
period ago. In the aircraft tracking case (and many others, we speculate),
there is more consistency from period to period than from instant to instant
(as aircraft are more inertial than processes). This leads to the weights

7

LG TR RO R Ry

0.1

Figure 3: Weights of previous loads in best forecast.

illustrated in Figure 3, which were computed from the values for § and ©
that best fit our sample series.

Forecasts can also be computed directly from the differer.ce equation we
used to define the model. In either case, forecasts for greater lead times can
be calculated by repeated use of the step-ahead formula. (By lead time we
mean the time from when the total load is last kn,wn to when the forecast
is for.)

Since the period (in this case, the scan time of a radar) is long relative to
the communication latencies of the system, it is reasonable to suppose that
each site can have complete knowledge of all other sites’ loads at least up
until one period earlier, with diminishing knowledge thereafter. It should
be possible in principle to make some use of the more recent, incomplete,
information to improve the forecast, given a model of the load distribution
with load balancing. In the next section we address this problem and show a
heuristic solution. However, Figure 4 shows that even forecasts made using

only data up through one period in advance are usually moderately accurate.

mopm o

|
L

s -
300 310 320 3% M40 350 300 370 380 300 400

. time (ms)
Figure 4: Load forecast from data through one period earlier.

2.3 How typical is this example?

Though this section presented a case study of a single time series taken from
a single application, we believe the basic features are common to other sys-
tems as well. Preliminary results from experimentation with a passive radar
interpretation system [4] confirm this belief. The IMA (0,1,1) x (0,1,1),
model used here may well suit many such systems, though its suitability
should of course be tested in each case. As well as testing the suitability of
the model to a particular application, it is necessary to tune the parameters
using sample time series. Systems with more than one period, for example
from heterogeneous sensors, would necessitate a straightforward extension
of the model.

One potential stumbling block in generalizing this technique to more
realistic systems is that higher-level processing tends to be triggered by
significant changes in the input (or by the lack of expected changes), rather
than by the input itself. For example, a system that not merely tracks
aircraft, but also attempts to deduce possible objectives, would reconsider
the objective of an aircraft that sharply turned, or that failed to turn when
it was expected to. This reduces the scan-to-scan consistency of the load. It
remains to be seen how troublesome this is; clearly this depends on how much
of the processing is special-case. When this issue came up in a discussion
with a group familiar with actual systems, the consensus was that the load

9

B S CIN

on present-day systems is indeed quite periodic [15].

3 Incorporating Incomplete Information

The simple stochastic model presented in the preceding section only allows
load information old enough to be complete (i.e. available from all sites) to
be used. In this section we refine our model to allow incomplete information
(i.e., more recent loads from some sites) to be employed. We formulate the
problem, show an exact but impractical solution, and then present provably
good practical heuristic approximations.

3.1 The problem

In order to understand what use a site can make of recent but incomplete
information, we must refine our model to include how the system-wide total
load is divided among the N sites. A simple, plausible version of this is to
assume that the sites are independent instantaneously, but in the longer-
term are successfully balanced. Formally, the model we have in mind is

Zt-1 + Z¢—10 — Zt-11 — 9a;-1 — Oae_10 + 00as_11
N L

Zit=@a;;: +

where we use z;, for the load of site i at time ¢ (with z, = ¥; 2;,) and
similarly for a;; and a; (the a;: are independently normally distributed,
with variance o3).

As long as all z;; are known, the a;; can be calculated, and thus used
for forecasting. When the information is incomplete, the deviation of the
known z; ¢ from the step-ahead forecasts can no longer be attributed solely to
their corresponding a; ¢, but rather will also include the persistent fraction of
earlier unknown perturbations. The problem is to find the expected division
between these two sources of perturbation, as the expected value of each a; ¢
should be incorporated into the forecast in its own way.

3.2 Exact solution

This problem can be solved by applying Bayes’s theorem:

o We are given as a prior distribution for the a; . that they are indepen-
dently normally distributed with some variance o3.

10

e We make observations which imply a joint likelihood for the a; . that
is uniform where certain linear combinations of them (given below)
equal the known z;; and zero elsewhere.

e We would like to find the posterior joint distribution of the a; ¢, specif-
ically its expected value, for use in forecasting.

The non-zero regions of the likelihood function can be found by rewriting
the equation for z; in terms of the a;; alone, using the summation operators
§ = (1+ SB) and Syo = (1 + 510B):

, (1=0)SB+ (1~)$10B" + (1 - 0)(1 - ©)§ 5108)as
= .

The posterior distribution can readily be written using Bayes’s theorem,
provided one is willing to leave some messy integrals in it. Unfortunately,
this leaves numerical integration as the only way to find the needed expected
value. This seems to be too much work to expect a load-balancing system
to pezform each time interval. What is needed is a pre-posterior analysis—a
general analysis done in advance, into which specific numbers can be plugged
at run time. Unfortunately, we know of no such approach to this problem in
the general case. In the next subsection we consider heuristic approximations
appropriate to our intended implementation. The analysis above serves as
the standard by which the heuristics are judged, as well as suggesting them.

Zit = Gt

3.3 Heuristic approximations

The simplest heuristic is to simply assume that the full deviation of each
known load z;; from its step-ahead forecast is purely its corresponding a; ;.
This heuristic is actually the truth (given our model) for the first time-
~ quantum with incomplete information, and can be shown to be a conser-
vative approximation provided there is less than a period of incomplete
information. By a conservative approximation, we mean that this heuris-
tic is guaranteed to be more accurate than simply ignoring the incomplete
information. This is because mistaking the retained portion of prior pertus-
bations for current perturbation leads to it’s being erroneously re-multiplied
by (1 - 0), i.e. underestimated.

We can improve this approximation by taking advantage of one feature
of our intended implementation. ‘fhe implementation we suggest in section 5
uses a randomized style of information spreading known as “rumor monger-
ing” which spreads each site’s load information to an exponentially widening

11

fraction of the other sites. Thus the amount of load information a site has
drops off exponentially with recency, and only the earliest incomplete load
information is of any real significance. ‘

In particular, for realistic parameters (e.g. a spreading factor of eight)
the only significant improvement that could be made in the above simple
heuristic would be to better account for the deviations observed in the sec-
ond incomplete-information time-quantum. Moreover, this division between
the first two incomplete-information time-quanta need not make use of in-
formation from later time-quanta, as such information would be very weak
under these assumptions. This leaves a tractable two-quanta version of the
general problem of the preceding subsection.

The a;; from the N, non-reporting sites of the first quantum can be
lumped together, as can those from the N, reporting sites of the second
quantum. This is because of the symmetry amongst them. We will call the
contribution of the former to the second-quanta deviations X and that of
the latter Y. Our prior distributions for them are independent, normal, both
have mean zero, and (by elementary probability theory) have the variances

2 N? 20 A2
ol Tv—z-(l —8)*N,o;
0’3 = N,az.

We know that X and Y sum to the observed deviation, §, of the second-
quanta loads from their step-ahead forecasts. Therefore, the posterior dis-

tribution from Bayes’s theorem gives us the following posterior expected
values:

foo ze—z’ [203~(6-2)3/203 dz
—00

A R T

2
I
o +a?

E(X)

o?
o2 + 0¥’

E(Y)

Thus we can readily at run time use the observed values of §, N,,, and N, to
calculate a very good approximation to the best forecast possible with the
" available information.

12

4 Precision of Forecasts

In this section we analyze the potential for practical utility of our load-
characterization scheme. We show that for the large numbers of sites char-
acteristic of massively-parallel architectures, our scheme provides load esti-
mates which are accurate enough to be useful for load balancing.

We can use the model of section 2 to calculate probability limits of
forecasts—that is, the region around the forecast in which the actual system-
wide load will lie some specified fraction of the time. Additionally, the more
detailed model of section 3 specifies how the individual sites’ loads can be
expected to be distributed about the system-wide average load. What is
most interesting is combining these two, in order to determine

e what fraction of the sites can be expected to be over- or under-loaded
at some significance level, and

o how much relative error can be expected in the amount of work trans-
ferred between sites, due to erroneous forecasts.

Happily, we show that the accuracy of the forecasts relative to the standard-
deviation of the site loads goes up with the square-root of the number of
sites, so that for massively-parallel systems the uncertainty in the forecasts
is unproblematic (assuming the validity of the model).

4.1 Probability limits of forecasts

The conditional probability distribution of the system-wide load about its
forecast value is simply the sum of those of the a; not included in the forecast.
The error in the forecast will thus be normally distributed with mean zero
and variance increasing with lead-time. For the IMA (0,1,1) x (0,1,1),
model, if the forecast is made using complete information only, with lead
time ! < p, the variance is '

V() = (1+ (- 1)(1-8)})No?.

We can use the above formula to calculate approximate probability limits
for the forecasts by substituting an estimate for o,. One approach would be
to estimate it using the sample standard deviation from prior runs. Prior to
the introduction of load balancing, the detailed model of section 3 certainly
doesn’t apply, but the system-wide model of section 2 presumably does, at
least approximately. Therefore, the sample variance of the system-wide load

13

should be used as an initial estimate for No3, rather than starting with the
sample variance of individual site loads.? If the system-wide load sample
standard deviation is s, then we can estimate that with probability ¢ the
actual load differs from the lead ! forecast by more than

uepatyf1+ (1~ 1)(1- 0)?,

where u,/, is the ¢/2-tail-area point of the unit normal distribution. Notice
that these bounds are for the total load—the standard deviation, and hence
probability limits, for the average load are smaller by a factor of N.

4.2 Comparison with the distribution of site loads

Our model asserts that the loads of the individual sites at any time are
normally distributed about the system-wide average load with standard de-
viation 0,. We can compare this with the standard deviation of the lead !
conditional probability distribution of the average load, which we derived in
the previous subsection. The latter is larger by a factor of

vitd-1)1 -6y
\/F ’

the factor of /N results from averaging N independent deviates.

This implies that for large systems the forecasts will be accurate enough
to be useful. For example, if the system of section 2 could be spread among
1024 sites, even one-period-ahead forecasts would have a factor of 27 lower
standard deviation than the site loads. Thus virtually all apparent over- or
under-loads would be statistically significant, and the relative error in the
amount of work transferred would be small (roughly 1/27).

5 Load-balancing Mechanism

In this section we outline a load-balancing scheme employing the load-
characterization methodology of the preceding sections. Our scheme relies
on a “rumor mongering” style of information spreading [9], which is appro-
priate to our architecture. We show that the mechanism not only allows
sites to assess their load with respect to the system-wide average, but also

2We only wrote the formula in terms of the per-site o2 in order to be notationally
consistent with section 3.

14

e

h

allows overloaded sites to reliably find sufficiently underloaded sites to which
objects can be migrated.

If each site stores its knowledge of all sites’ load histories, then they can
spread their information around by a process of “rumor mongering”—that
is, by randomly sharing information [10,1,2,9]. Naturally, the histories can
be compressed by discarding information old enough to be scarcely relevant
and by combining together loads from all sites where they all are known.
Some information may be young enough to relevant to forecasting, but old
enough to be well-known. This information can be retained but not passed
on; [9] has a good discussion of such issues.

Our CARE ensemble architecture [8] uses a cut-through interconnec-
tion network, so latency is not proportional to distance (in the absence of
contention). Additionally, it supports an efficient multicast protocol [5].

Therefore, we suggest that the information spreading be achieved by each

site periodically multicasting its information to a random sample of the
other sites. While the number of sites that each site will hear from in any
given period varies, it can be shown that the distribution (a binomial distri-
bution, rapidly approaching a Poisson distribution) is such that a paucity of
information will be rare, even with a quite moderate sample size, e.g. eight.

Upon receiving a load-information message, a site should integrate the
information into its own knowledge, and then use the time-series model (pro-
vided a priori based on experiments with the particular system) to estimate
the current system-wide average load with probability limits. It should then
compare this predicted average with its own current load, and with the load
of the sender at the time of the sending. If the recipient appears significantly
underloaded and the sender appears significantly overloaded, a request for
work should be sent back.

This is a combination of random gossiping to distribute the information

_ needed to decide whether and how much work to transfer, together with

polling/bidding to match up the participating sites. As with all bidding
schemes, some precautions are needed to avoid races. The underloaded
site should not place any other requests for work until it receives work or
an apology from the overloaded site. As the inter-arrival time for messages
from overloaded sites should be high relative to the round-trip message time,
few conflicts should occur. -

The bidding could be reversed (overloaded sites could ask underloaded
sites to accept work), but this would require that an extra message be sent.
The system as we present it can best be classified as receiver-initiated [11},
though in a sense the sender initiates the process by multicasting its load

15

S Y ST

information. This confusion of terminology results from our integration
of the global-information-spreading and partner-seeking components of the
mechanism.

It should be rare that an overloaded site cannot find enough total un-
derload among the sites it samples to match its own overload. For example,
suppose that the loads are normally distributed (as they are in the model
of section 3), and that the sample size is eight. Of the eight sites sampled,
it can be expected that four will be underloaded. The expected value of the
absolute value of a normal deviate is 2/v2x, or about .8 standard devia- -
tions, so the four underloaded sites will on the average have approximately
3.2 standard deviations worth of underload. But the originating site must
really be far out on the tail of the distribution to have more than 3.2 stan-
dard deviations worth of overload. Notice that it is impossible to make as
strong a statement in the reverse direction—this is an additional reason to
favor a receiver-initiated transfer (it is more important for overloaded sites
to reliably find underloaded sites than the converse).

The only aspect of load balancing not addressed by this mechanism is the
choice of which objects to migrate. Here again the real-time nature of the
system must be addressed. In general neither the highest- nor lowest-priority
objects are best migrated, so as to neither unfairly advance a low-priority
object nor hold up (due to migration time) a high-priority object. Chang
addresses these issues in [6].

6 Acknowledgments

Anoop Gupta, Bruce Delagi, Harold Brown, and John Hennessy provided
valuable feedback on this work. The entire Advanced Architectures Project
made this work possible, by providing the technical context; many members
additionally helped me with numerous specific difficulties. In this context,
I'd like to specifically thank Greg Byrd, Bruce Delagi, Sayuri Nishimura,
Alan Noble and Nakul Saraiya.

References
(1) Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel. Processes

migrate in Charlotte. Technical Report 655, Computer Sciences De-
partment, University of Wisconsin-Madison, August 1986.

16

(2] Amnon Barak and Amnon Shiloh. A distributed load-balancing policy
for a multicomputer. Software—Practice and Ezperience, 15(9):901-
913, September 1985.

(3] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Fore-
casting and Control. Holden-Day Inc., 1976.

(4] Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An experiment
in knowledge-based signal understanding using parallel architectures.
Technical Report STAN-CS-86-1136, Department of Computer Science,
Stanford University, October 1986.

[5] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A dynamic,
cut-through communications protocol with multicast. Technical Report
STAN-CS-87-1178, Department of Computer Science, Stanford Univer-
sity, September 1987.

[6] Hung-Yang Chang. Dynamic scheduling algorithms for distributed soft
real-time systems. Technical Report 728, Computer Sciences Depart-
ment, University of Wisconsin—-Madison, 1987.

[7] William J. Dally. Wire-efficient VLSI multiprocessor communications
networks. In Advanced Research in VLSI: Proceedings of the 1987 Stan-
Jord Conference, pages 391-415. The MIT Press, 1987.

[8] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd.
An instrumented architectural simulation system. In Artificial Intelli-
gence and Simulation: The Diversity of Applications. The Society for
Computer Simulation International, February 1988.

[9] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In Proceedings of the
Sizth Annual ACM Symposium on Principles of Distributed Computing,
pages 1-12, August 1987.

[10) Zvi Drezner and Amnon Barak. A probabilistic algorithm for scattering
information in a multicomputer system. Technical Report CRL-TR-
15-84, Computing Research Laboratory, University of Michigan, March
1984,

17

[11] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. A com-
parison of receiver-initiated and sender-initiated adaptive load sharing.
Performance Evaluation, 6(1):53-68, March 1986.

[12] Robert H. Halstead, Jr. and Stephen A. Ward. The MuNet: A scalable
decentralized architecture for parallel computation. In Proc. 7th Annual
Symposium on Computer Architecture, pages 139-145, May 1980.

[13) Paul Hudak and Benjamin Goldberg. Experiments in diffused com-
binator reduction. In 1984 ACM Symposium on Lisp and Functional
Programming, pages 167-176, August 1984.

{14] Phillip Krueger and Miron Livny. Load balancing, load sharing and
performance in distributed systems. Technical Report 700, Computer
Sciences Department, University of Wisconsin-Madison, August 1987.

[15) Personal communication, September 10, 1987. Discussion with mem-
bers of MIT Lincoln Laboratories Machine Intelligence Group.

{16] Russell Nakano and Masafumi Minami. Experiments with a knowledge-
based system on a multiprocessor. Technical Report STAN-CS-87-1188,
Department of Computer Science, Stanford University, October 1987.

[17] Jerry C. Yan. Managing and measuring two parallel programs on a
multiprocessor. Technical Report CSL-TR-87-333, Computer Systems
Laboratory, Stanford University, June 1987.

18

